Attractor Modeling and Empirical Nonlinear Model Reduction of dissipative Dynamical Systems

نویسنده

  • Erik M. Bollt
چکیده

In a broad sense, model reduction means producing a low-dimensional dynamical system that replicates either approximately, or more strictly, exactly and topologically, the output of a dynamical system. Model reduction has an important role in the study of dynamical systems and also with engineering problems. In many cases, there exists a good low-dimensional model for even very high-dimensional systems, even infinite dimensional systems in the case of a PDE with a low-dimensional attractor. The theory of global attractors approaches these issues analytically, and focuses on finding (depending on the question at hand), a slow-manifold, inertial manifold, or center manifold, on which a restricted dynamical system represents the interesting behavior of the dynamical system; the main issue depends on defining a stable invariant manifold in which the dynamical system is invariant. These approaches are analytical in nature, however, and are therefore not always appropriate for dynamical systems known only empirically through a dataset. Empirically, the collection of tools available are much more restricted, and are essentially linear in nature. Usually variants of Galerkin’s method, project the dynamical system onto a function linear subspace spanned by modes of some chosen spanning set. Even the popular Karhunen–Loeve decomposition, or POD, method is exactly such a method. As such, it is forced to either make severe errors in the case that the invariant space is intrinsically a highly nonlinear manifold, or bypass low-dimensionality by retaining many modes in order to capture the manifold. In this work, we present a method of modeling a low-dimensional nonlinear manifold known only through the dataset. The manifold is modeled as a discrete graph structure. Intrinsic manifold coordinates will be found specifically through the ISOMAP algorithm recently developed in the Machine Learning community originally for purposes of image recognition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Attractor for the Generalized Dissipative KDV Equation with Nonlinearity

In order to study the longtime behavior of a dissipative evolutionary equation, we generally aim to show that the dynamics of the equation is finite dimensional for long time. In fact, one possible way to express this fact is to prove that dynamical systems describing the evolutional equation comprise the existence of the global attractor 1 . The KDV equation without dissipative and forcing was...

متن کامل

Mathematical modeling of optimized SIRS epidemic model and some dynamical behavior of the solution

In this paper, a generalized mathematical model of spread of infectious disease as SIRS epidemic model is considered as a nonlinear system of differential equation. We prove that for positive initial conditions the resulting equivalence system has positive solution and under some hypothesis, this system with initial positive condition, has a positive $T$-periodic solution which is globally asym...

متن کامل

4 v 1 3 O ct 1 99 9 Dissipative Quasigeostrophic Motion under Temporally Almost Periodic Forcing ∗

The full nonlinear dissipative quasigeostrophic model is shown to have a unique temporally almost periodic solution when the wind forcing is temporally almost periodic under suitable constraints on the spatial square–integral of the wind forcing and the β parameter, Ekman number, viscosity and the domain size. The proof involves the pullback attractor for the associated nonautonomous dynamical ...

متن کامل

Nonlinear Dynamic Modeling and Hysteresis Analysis of Aerospace Hydro - dynamical Control Valves

A new procedure for deriving nonlinear mathematical modeling for a specific class of aerospace hydro - mechanical control valves is presented. The effects of friction on the dynamic behavior of these types of valves along with the experimental verifictions are also given. The modeling approach is based on the combination of the following three tasks: decomposition of the valve into simple speci...

متن کامل

Fractal structures in nonlinear dynamics

In addition to the striking beauty inherent in their complex nature, fractals have become a fundamental ingredient of nonlinear dynamics and chaos theory since they were defined in the 1970s. Moreover, fractals have been detected in nature and in most fields of science, with even a certain influence in the arts. Fractal structures appear naturally in dynamical systems, in particular associated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Bifurcation and Chaos

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2007